8-2 Points, Lines, and Their Graphs

Objective: To graph ordered pairs and linear equations in two variables.

Vocabulary

Plot a point Locate the graph of an ordered pair in a number plane.

Horizontal axis The horizontal number line in a number plane; the x-axis.

Origin The intersection of the axes on a number plane. The zero point on each axis.

Vertical axis The vertical number line in a number plane; the y-axis.

Graph of an ordered pair The point in a number plane associated with an ordered pair.

Abscissa The first coordinate in an ordered pair of numbers; the x-coordinate.

Ordinate The second coordinate in an ordered pair of numbers; the y-coordinate.

Coordinates of a point The abscissa and ordinate of the point, written as an ordered pair.

Coordinate axes The x- and y-axes in a number plane.

Coordinate plane A number plane; a plane in which a coordinate system has been set up.

Quadrant One of the four regions into which the coordinate axes separate a number plane.

Graph of an equation in two variables All the points that are the graphs of the solutions of the equation.

Linear equation An equation whose graph is a line.

Standard form of a linear equation The form ax + by = c, where a, b, and c are integers and a and b are not both zero.

Example 1

Plot each point in a number plane.

a.
$$A(-3, 2)$$

b.
$$B(3, -2)$$

c.
$$C(-1, -3)$$

Solution

8-2 Points, Lines, and Their Graphs (continued)

Plot each point in a coordinate plane.

1.
$$A(4, 2)$$

2.
$$B(6, 3)$$

3.
$$C(-4, -2)$$

3.
$$C(-4, -2)$$
 4. $D(-5, -1)$

5.
$$E(-5, 0)$$

6.
$$F(0, -5)$$

7.
$$G(-3, 2)$$

8.
$$H(3, -2)$$

Refer to the diagram at the right. Name the point(s) described.

- **9.** The point on the positive x-axis.
- 10. The point on the negative y-axis.
- 11. The points on the vertical line through Z.
- 12. The points on the horizontal line through Y.
- 13. The x-coordinate is zero.
- 14. The y-coordinate is zero.
- 15. The points have equal x- and y-coordinates.
- **16.** The points have opposite x- and y-coordinates.

(4, 0)

Example 2

Graph x - 2y = 4 in a coordinate plane.

Solution

Let
$$y = 0$$
:

Let
$$x = 0$$
:

$$x-2(0)=4$$

$$0-2y=4$$

A third solution, such as (2, -1) can be used as a check.

Graph each equation. You may wish to verify your graphs on a computer or a graphing calculator.

17.
$$x - y = 4$$

18.
$$x + y = 5$$

19.
$$y = 2x + 6$$

20.
$$y = -2x + 2$$

21.
$$2x + y = 4$$

22.
$$x - 3y = 6$$

23.
$$2x - 3y = 6$$

21.
$$2x + y = 4$$
 22. $x - 3y = 6$ **23.** $2x - 3y = 6$ **24.** $2x + 3y = 6$

Mixed Review Exercises

State whether each ordered pair is a solution of the given equation.

1.
$$2x + y = 7$$

(4, -1), (-1, 9)

2.
$$3a + 2b = 6$$

3.
$$x + 3y = 11$$

Solve.

5.
$$x^2 + 5x + 6 = 0$$

6.
$$-z + 9 = 3$$

7.
$$2b^2 - 6b - 8 = 0$$

8.
$$\frac{10-5y}{3}=5$$

9.
$$5x + 9 = 3x - 11$$

10.
$$10 = \frac{2}{5}n$$